
56 The Delphi Magazine Issue 48

Resource Strings And
Internationalisation
by Patrik Wang

It can be important to design your
application to be international

aware. Delphi 5 will (as far as we
know when we go to press) include
a degree of internationalisation
support, but there are simpler
techniques already available to us
in Delphi that will be appropriate
for some applications. Since ver-
sion 100 of the Borland Pascal com-
piler (Delphi 3 and C++Builder 3)
we can make use of the built-in
resource string compiler constant,
which will automatically generate
code that uses LoadString from the
resources in your application.

The VCL for Delphi 3 onwards
uses the resource string concept.
Here’s an example unit:

unit UserConsts;
interface
resourcestring
SHelloWorld = ‘Hello world’;
SHelloName = ‘Hello %s’;

implementation
end.

Here is some application code
demonstrating its use:

ShowMessage(Format(SHelloName),
[Application.Title]);

ShowMessage(Format(SHelloName),
[Application->Title]);

It is worth noting that the compiler
will automatically assign unique
resource identifiers backwards
from 65,535, when you compile
your application.

One great advantage is that you
can override previous declara-
tions in any project which uses this
unit, so that it is possible to
re-declare new strings in your own
source code, then the compiler will
take care of duplicates and link pre-
vious declarations to the new ones.
Because of this great feature you
are, for example, able to translate
only parts of Consts.pas file if you

wish. To give a practical example,
consider that you are only inter-
ested in translating the button
messages such as OK, Cancel, Yes
and No, but not the rest of the VCL
library Consts.pas file. This is done
by creating a resource string unit
such as the one above and then
only including the resource identi-
fiers necessary, such as:

SOKButton = ‘You Bet’;
SCancelButton = ‘Go Away’;
SYesButton = ‘&Oui’;
SNoButton = ‘&Non’;

You can call resource string con-
stants using the unit name (eg
Consts.SReadError) or not (eg
SReadError). If you do not call a
resourcestring with its unit name,
you can also re-declare the con-
stant in any other unit (the unit

does not need to be called
Consts.pas). This is why it is possi-
ble to re-declare all the VCL library
strings in your own application in
your own language, even though
the VCL library has already been
compiled.

If you are a component devel-
oper it is also very important to
use resourcestring constants
since your customers can then
re-declare them in their own lan-
guage without the source.

For more information about
resource string usage see the
Delphi or C++Builder help.

Patrik Wang works for Lingscape
Ltd, who produce globalisation
tools for developers. Email him at
Support@lingscape.com or visit
www.lingscape.com


